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Abstract Microtubule asters - radial arrays of microtubules organized by centrosomes - play a

fundamental role in the spatial coordination of animal cells. The standard model of aster growth

assumes a fixed number of microtubules originating from the centrosomes. However, aster

morphology in this model does not scale with cell size, and we recently found evidence for non-

centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization

dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand

as traveling waves and recapitulates all major aspects of aster growth. With increasing nucleation

rate, the model predicts an explosive transition from stationary to growing asters with a

discontinuous jump of the aster velocity to a nonzero value. Experiments in frog egg extract

confirm the main theoretical predictions. Our results suggest that asters observed in large fish and

amphibian eggs are a meshwork of short, unstable microtubules maintained by autocatalytic

nucleation and provide a paradigm for the assembly of robust and evolvable polymer networks.

DOI: 10.7554/eLife.19145.001

Introduction
Animal cells use asters, radial arrays of microtubules, to spatially organize their cytoplasm (Wil-

son, 1896). Specifically, astral microtubules transport organelles (Grigoriev et al., 2008;

Wang et al., 2013; Waterman-Storer and Salmon, 1998), support cell motility by mediating

mechanical and biochemical signals (Etienne-Manneville, 2013), and are required for proper posi-

tioning of the nucleus, the mitotic spindle, and the cleavage furrow (Field et al., 2015; Grill and

Hyman, 2005; Neumüller and Knoblich, 2009; Tanimoto et al., 2016; Wilson, 1896). Within

asters, individual microtubules undergo dynamic instability (Mitchison and Kirschner, 1984): They

either grow (polymerize) or shrink (depolymerize) at their plus ends and stochastically transition

between these two states. The collective behavior of microtubules is less well understood, and it is

not clear how dynamic instability of individual microtubules controls aster growth and function.

The standard model of aster growth posits that centrosomes nucleate and anchor all microtubules

at their minus ends while the plus ends polymerize outward via dynamic instability (Brinkley, 1985).

As a result, aster growth is completely determined by the dynamics of individual microtubules aver-

aged over the growing and shrinking phases. In particular, the aster either expands at a velocity

given by the net growth rate of microtubules or remains stationary if microtubules are unstable and

tend to depolymerize (Belmont et al., 1990; Dogterom and Leibler, 1993; Verde et al., 1992).

The standard model of aster growth is being increasingly challenged by reports of microtubules

with their minus ends located far away from centrosomes (Akhmanova and Steinmetz, 2015;

Keating and Borisy, 1999). Some of these microtubules may arise simply by detachment from cen-

trosomes (Keating et al., 1997; Waterman-Storer et al., 2000) or severing of pre-existing microtu-

bules (Roll-Mecak and McNally, 2010). However, new microtubules could also arise due to a
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nucleation process independent of centrosomes (Clausen and Ribbeck, 2007; Efimov et al., 2007;

Petry et al., 2013) and contribute to both aster growth and its mechanical properties. Indeed, we

recently observed that centrosomal nucleation is insufficient to explain the large number of growing

plus ends found in asters (Ishihara et al., 2014). Moreover, the standard model demands a decrease

in microtubule density at aster periphery, which is inconsistent with aster morphology in frog and

fish embryos (Wühr et al., 2008, 2010). To resolve these inconsistencies, we proposed an autocata-

lytic nucleation model, where microtubules or microtubule plus ends stimulate the nucleation of new

microtubules at the aster periphery (Ishihara et al., 2014a, 2014b; Wühr et al., 2009). This mecha-

nism generates new microtubules necessary to maintain a constant density as the aster expands. We

also hypothesized that autocatalytic nucleation could effectively overcome extinction of individual

microtubules, and allow rapid growth of large asters made of short, unstable microtubules. However,

we did not provide a quantitative model that can be compared to the experiments or even show

that the proposed mechanism is feasible.

Here, we develop a quantitative biophysical model of aster growth with autocatalytic nucleation.

It predicts that asters can indeed expand even when individual microtubules turn over and disappear

by depolymerization. In this regime, aster expansion is driven by the increase in the total number of

microtubules, and the resulting aster is a network of short interconnected microtubules. The transi-

tion from stationary to growing asters depends on the balance between polymerization dynamics

and nucleation. At this transition, our theory predicts a minimum rate at which asters grow, which we

define as the gap velocity. This gap velocity arises due to the dynamic instability of microtubule poly-

merization and excludes a wide class of alternative models. More importantly, this mode of aster

growth allows the cell to assemble asters with varying polymer densities at consistently large speeds.

Using a cell-free reconstitution approach (Field et al., 2014; Nguyen et al., 2014), we perform bio-

chemical perturbations and observe the slowing down and eventual arrest of aster growth with a

substantial gap velocity at the transition. By combining theory and experiments, we provide a quan-

titative framework for how the cell cycle may regulate the balance between polymerization dynamics

and nucleation to control aster growth. We propose that the growth of large interphase asters is an

emergent property of short microtubules that constantly turnover and self-amplify.

eLife digest Cells must carefully organize their contents in order to work effectively. Protein

filaments called microtubules often play important roles in this organization, as well as giving

structure to the cell. Many cells contain structures called asters that are formed of microtubules that

radiate out from a central point (much like a star shape). Textbooks generally state that all

microtubules in the aster grow outward from its center. If this was the case, the microtubules at the

edge of large asters – such as those found in frog egg cells and other extremely large cells – would

be spread relatively far apart from each other. However, even at the edges of large asters, the

microtubules are quite densely packed.

In 2014, a group of researchers proposed that new microtubules could form throughout the aster

instead of all originating from the center. This model had not been tested; it was also unclear under

what conditions an aster would be able to grow to fill a large cell.

Ishihara et al. – including some of the researchers involved in the 2014 work – have now

developed a mathematical theory of aster growth that is based on the assumption that microtubules

stimulate the generation of new microtubules. The theory reproduces the key features seen during

the growth of asters in large cells, and predicts that the asters may stay at a constant size or grow

continuously. The condition required for the aster to grow is simple: each microtubule in it has to

trigger the generation of at least one new microtubule during its lifetime. Ishihara et al. have named

this process “collective growth”.

Experiments performed using microtubules taken from crushed frog eggs and assembled under a

cover slip provided further evidence that asters grow via a collective growth process. Future studies

could now investigate whether collective growth also underlies the formation of other cellular

structures.

DOI: 10.7554/eLife.19145.002
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Results

Conceptual model for aster growth based on polymerization dynamics
and autocatalytic nucleation
Asters are large structures comprised of thousands of microtubules. How do the microscopic dynam-

ics of individual microtubules determine the collective properties of asters such as their morphology

and growth rate? Can asters sustain growth when individual microtubules are unstable? To address

these questions, we develop a theoretical framework that integrates polymerization dynamics and

Figure 1. A biophysical model for the collective growth of microtubule asters. (A) We propose that asters grow via

two microscopic processes: polymerization and nucleation. Individual microtubules follow the standard dynamic

instability with a growing state with polymerization rate vg and a shrinking state with depolymerization rate vs.

Transitions between the states occur at rates fcat and fres, which model catastrophe and rescue events, respectively.

New microtubules are added at a rate r via a nucleation at pre-existing plus ends in the growing state. (B)

Individual vs. collective growth of asters. In the standard model of ‘individual growth’, asters increase their radius

at rate V ¼ d Radius
dt

only via a net polymerization from the centrosome (yellow). Thus, this model predicts that the

rate of aster growth equals the mean polymerization rate V ¼ J, the number of microtubules is constant, and their

density decreases away from the centrosomes. In the collective growth model, the microtubule density is constant

and the number of microtubules increases. Autocatalytic nucleation makes asters grow faster than the net

polymerization rate J and can sustain growth even when individual microtubules are unstable J<0.

DOI: 10.7554/eLife.19145.003
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autocatalytic nucleation (Figure 1A). Our main goal is to determine the distribution of microtubules

within asters and the velocity at which asters grow:

V ¼
dRadius

dt
: (1)

Beyond being the main experimental readout, the aster velocity is crucial for cell physiology

because it allows large egg cells to divide its cytoplasm rapidly.

Polymerization dynamics of plus ends is an individual property of microtubules. To describe plus

end dynamics, we adopt the two-state model of microtubule dynamic instability (Figure 1A, left). In

this model, a single microtubule is in one of the two states: (i) the growing state, where plus ends

polymerize at rate vg and (ii) the shrinking state, where plus ends depolymerize at rate vs. A growing

microtubule may transition to a shrinking state (catastrophe event) with rate fcat. Similarly, the shrink-

ing to growing transition (rescue event) occurs at rate fres. For large asters growing in Xenopus egg

cytoplasm, we provide estimates of these parameters in Table 1.

Plus end dynamics can be conveniently summarized by the time-weighted average of the poly-

merization and depolymerization rates (Dogterom and Leibler, 1993; Verde et al., 1992):

J ¼
vgfres� vsfcat

fresþ fcat
: (2)

This parameter describes the tendency of microtubules to grow or shrink. When J<0, microtu-

bules are said to be in the bounded regime because their length inevitably shrinks to zero, i.e. micro-

tubule disappears. When J>0, microtubules are said to be in the unbounded regime, because they

have a nonzero probability to become infinitely long. Parameter J also determines the mean elonga-

tion rate of a very long microtubule that persists over many cycles of catastrophe and rescue. The

dynamics of short microtubules, however, depends on their length and initial state (growing vs.

shrinking) and should be analyzed carefully.

The standard model posits that asters are produced by the expansion of individual microtubules,

so the transition from small mitotic asters to large interphase asters is driven by a change in the sign

of J (Dogterom and Leibler, 1993; Verde et al., 1992) (Figure 1B left, ‘individual growth’). With

bounded dynamics J<0, the standard model predicts that every microtubule shrinks to zero length

and disappears. This microtubule loss is balanced by nucleation of new microtubules at the centro-

somes, the only place where nucleation is allowed in the standard model. As a result, asters remain

in the stationary state and are composed of a few short microtubules, and the aster velocity is thus

V ¼ 0. With unbounded dynamics J>0, the standard model predicts an aster that has a constant

number of microtubules and increases its radius at a rate equal to the elongation rate of microtu-

bules (i.e. V ¼ J).

Table 1. Model parameters used to describe large aster growth reconstituted in interphase Xenopus egg extract.

Quantity Symbol Value Comment

Polymerization rate vg 30 mm/min Measured from growing plus ends and EB1 comets

Depolymerization rate vs 42 mm/min Measured from shrinking plus ends (Ishihara et al., 2014a)

Catastrophe rate fcat 3.3 min�1 Measured from EB1 comet lifetimes (see Materials and methods)

Rescue rate fres 2.0�0.3 min�1 Estimated from Equations (4) and (6)

Autocatalytic nucleation rate r 2.1�0.2 min�1 Estimated from Equations (4) and (6)

Carrying capacity of growing ends K 0.4 mm�2
Estimated from comparing Cbulk

g to predicted (see SI)

Mean microtubule length hli 16 � 2 mm Estimated from from dynamics parameters (see SI)

Aster velocity V 22.3�2.6 mm/min Measured from rate of aster radius increase

Gap velocity Vgap 12.8�1.7 mm/min Measured from aster growth at 320 nM MCAK-Q710

Bulk growing plus end density Cbulk
g

0.053�0.030 mm�2 Measured from EB1 comet density (Ishihara et al., 2014a)

DOI: 10.7554/eLife.19145.004

Ishihara et al. eLife 2016;5:e19145. DOI: 10.7554/eLife.19145 4 of 36

Research article Biophysics and Structural Biology Cell Biology

http://dx.doi.org/10.7554/eLife.19145.004Table%201.Model%20parameters%20used%20to%20describe%20large%20aster%20growth%20reconstituted%20in%20interphase%20Xenopus%20egg%20extract.%2010.7554/eLife.19145.004QuantitySymbolValueCommentPolymerization%20ratevg30%20&x03BC;m/minMeasured%20from%20growing%20plus%20ends%20and%20EB1%20cometsDepolymerization%20ratevs42%20&x03BC;m/minMeasured%20from%20shrinking%20plus%20ends%20(Ishihara%20et�al.,%202014a)Catastrophe%20ratefc&x2062;a&x2062;t3.3%20min&x2212;1Measured%20from%20EB1%20comet%20lifetimes%20(see%20Materials&x00A0;and&x00A0;methods)Rescue%20ratefr&x2062;e&x2062;s2.0&x00B1;0.3%20min&x2212;1Estimated%20from%20Equations%20(4)%20and%20(6)Autocatalytic%20nucleation%20rater2.1&x00B1;0.2%20min&x2212;1Estimated%20from%20Equations%20(4)%20and%20(6)Carrying%20capacity%20of%20growing%20endsK0.4%20&x03BC;m&x2212;2Estimated%20from%20comparing%20Cgb&x2062;u&x2062;l&x2062;k%20to%20predicted%20(see%20SI)Mean%20microtubule%20length&x27E8;l&x27E9;16%20&x00B1;%202%20&x03BC;mEstimated%20from%20from%20dynamics%20parameters%20(see%20SI)Aster%20velocityV22.3&x00B1;2.6%20&x03BC;m/minMeasured%20from%20rate%20of%20aster%20radius%20increaseGap%20velocityVg&x2062;a&x2062;p12.8&x00B1;1.7%20&x03BC;m/minMeasured%20from%20aster%20growth%20at%20320%20nM%20MCAK-Q710Bulk%20growing%20plus%20end%20densityCgb&x2062;u&x2062;l&x2062;k0.053&x00B1;0.030%20&x03BC;m&x2212;2Measured%20from%20EB1%20comet%20density%20(Ishihara%20et�al.,%202014a)
http://dx.doi.org/10.7554/eLife.19145


Below, we add autocatalytic microtubule nucleation (Figure 1A, right) to the standard model and

propose the regime of ‘collective growth’ (Figure 1B, right). In this regime, asters grow (V>0)

although individual microtubules are bounded (J<0) and are, therefore, destined to shrink and disap-

pear. The growth occurs because more microtubules are nucleated than lost, and new microtubules

are typically nucleated further along the expansion direction. Indeed, when a new microtubule is

nucleated, it is in a growing state and starts expanding outward before its inevitable collapse. Dur-

ing its lifetime, this microtubule can nucleate a few more microtubules all of which are located fur-

ther along the expansion direction. As we show below, this self-amplifying propagation of

microtubules is possible only for sufficiently high nucleation rates necessary to overcome microtu-

bule loss and sustain collective growth.

Specifically, we assume that new microtubules nucleate at locations away from centrosomes at

rate Q. This rate could depend on the local density of growing plus ends if they serve as nucleation

sites or the local polymer density if nucleation occurs throughout a microtubule. The new microtu-

bules have zero length and tend to grow radially due to mechanical interactions with the existing

microtubule network. These non-centrosomal microtubules disappear when they shrink back to their

minus ends. Our assumptions are broadly consistent with known microtubule physiology

(Clausen and Ribbeck, 2007; Petry et al., 2013), and we found strong evidence for nucleation away

from centrosomes in egg extract by microtubule counting in growing asters (Ishihara et al., 2014a).

Below, we consider plus-end-stimulated nucleation and the analysis for the polymer-stimulated

nucleation is summarized in the SI.

Without negative feedback, autocatalytic processes lead to exponential growth, but there are

several lines of evidence for an apparent ‘carrying capacity’ of microtubules in a given cytoplasmic

volume (Clausen and Ribbeck, 2007; Ishihara et al., 2014a; Petry et al., 2013). Saturation is inevi-

table since the building blocks of microtubules are present at a fixed concentration. In our model,

we impose a carrying capacity by expressing autocatalytic nucleation as a logistic function of the

local density of growing plus ends, which is qualitatively consistent with local depletion of nucleation

factors such as the gamma-tubulin ring complex. Other forms of negative feedback (e.g. at the level

of polymerization dynamics) are possible as well. In SI, we show that the type of negative feedback

does not affect the rate of aster growth, which is determined entirely by the dynamics at the leading

edge of a growing aster where the microtubule density is small and negative feedback can be

neglected.

Mathematical model of autocatalytic growth of asters
Assuming a large number of microtubules, we focus on the mean-field or deterministic dynamics (SI)

and formalize our model as a set of partial differential equations. Specifically, we let �gðt; x; lÞ and

�sðt; x; lÞ denote respectively the number of growing and shrinking microtubules of length l with their

minus ends at distance x>0 from the centrosome. The number of newly nucleated microtubules is

given by QðxÞ ¼ rCgðt; xÞð1� Cgðt; xÞ=KÞ, where r is the nucleation rate, K is the carrying capacity con-

trolling the maximal plus end density, and Cgðt; xÞ is the local density of the growing plus ends at

point x. The polymerization dynamics and nucleation are then described by,

q�g
qt

¼�vg
q�g
ql

� fcat�g þ fres�sþQðxÞ � dðlÞ

q�s
qt

¼þvs
q�s
ql

þ fcat�g� fres�s:

8

>

>

<

>

>

:

(3)

Note that polymerization and depolymerization changes the microtubule length l, but not the

minus end position x. Equations at different x are nevertheless coupled due to the nucleation term,

which depends on x through Cg.

To understand this system of equations, consider the limit of no nucleation (r ¼ 0). Then, the

equations at different x become independent and we recover the standard model that reduces aster

growth to the growth of individual microtubules (Dogterom and Leibler, 1993; Verde et al., 1992).

With nucleation, aster growth is a collective phenomenon because microtubules of varying length

and minus end positions contribute to Cgðt; xÞ, which can be expressed as a convolution of �g (see

SI). The delta-function dðlÞ ensures that newly nucleated microtubules have zero length.
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Finally, we need to specify what happens when microtubules shrink to zero length. In our model,

microtubules originating from centrosomes rapidly switch from shrinking to growth (i.e. re-nucleate),

while non-centrosomal microtubules disappears completely (i.e. no re-nucleation occurs). We further

assume that mother and daughter microtubules disappear without affecting each other. Indeed, if

the collapse of the mother microtubule triggered the collapse of the daughter microtubule (or vice

versa), then no net increase in the number of microtubules would be possible in the bounded

regime. One consequence of this assumption is that the minus end of a daughter microtubule

becomes detached from any other microtubules in the aster following the collapse of the mother

microtubule. As a result, minus ends need to be stabilized after nucleation possibly by some addi-

tional factors (Akhmanova and Hoogenraad, 2015) and mechanical integrity of the aster should rely

on microtubule bundling (Ishihara et al., 2014a).

Asters can grow as spatially propagating waves with constant bulk
density
To check if our model can describe aster growth, we solved Equation (3) numerically using finite dif-

ference methods in an 1D planar geometry. With relatively low nucleation rates and J<0, microtu-

bule populations reached a steady-state profile confined near the centrosome reminiscent of an

aster in the standard model with bounded microtubule dynamics (Figure 2A left). When the nucle-

ation rate was increased, the microtubule populations expanded as a traveling wave with an approxi-

mately invariant shape and constant microtubule density at the periphery (Figure 2A right)

consistent with the growth of interphase asters in our reconstitution experiments (Figure 2B and

Ishihara et al., 2014a). Thus, our model predicted two qualitatively different states: stationary and

growing asters.

Analytical solution for aster velocity and critical nucleation
Next, we solved Equation (3) exactly and obtained the following analytical expression for the aster

velocity in terms of model parameters:

Figure 2. Our model captures key features of large aster growth. (A) Time evolution of growing plus end density predicted by our model, which we

solved via numerical simulations in 1D geometry. In the stationary regime, the microtubule population remained near the centrosome vg ¼ 30, vs ¼ 40,

fcat ¼ 3, fres ¼ 1, and r ¼ 1:0 (left). In contrast, outward expansion of the microtubule population was observed when the nucleation rate was increased

to r ¼ 2:5, above the critical nucleation rate rc (right). For both simulations, microtubules are in the bounded regime J<0. (B) Experimental

measurements confirm that asters expand at a constant rate with time-invariant profiles of the plus end density, as predicted by our model. The plus

end densities were estimated as EB1 comet density during aster growth as previously described (Ishihara et al., 2014a).

Panel B reprinted with permission from Figure 4C from (Ishihara et al., 2014a), Proceedings of the National Academy of Sciences of the United States of

America. Not covered by the terms of the Creative Commons Attribution 4.0 International license (Ó copyright Proceedings of the National Academy of

Sciences of the United States of America, 2014. All Rights Reserved).

DOI: 10.7554/eLife.19145.005
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V ¼
vgðvgfres� vsfcatÞ

2

vgðvgfres� vsfcatÞðfresþ fcatÞþ ðvg þ vsÞðvgfresþ vsfcatÞr

�2ðvg þ vsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgfcatfresrðvgfres� vsfcat þ vsrÞ
q

0

@

1

A

; (4)

which holds for the parameter range rc<r<fcat. The details of the calculation, including the definition

of rc are summarized in SI.

Using this expression, we summarize how aster velocity V is affected by the mean polymerization

rate J (Figure 3A) and nucleation rate r (Figure 3B). In the absence of autocatalytic nucleation

(r ¼ 0), our model reduces to the standard model and predicts that asters only grow when J>0 with

V ¼ J (Figure 3A blue line). When nucleation is allowed (r>0), the aster velocity increases with r and

asters can grow even when individual microtubules are unstable J<0 (Figure 3A and B). During this

collective growth, the aster expands radially because more microtubules are nucleated than lost at

the front. In the aster bulk, nucleation is reduced from the carrying capacity, and the aster exists in

the dynamic balance between microtubule gain due to nucleation and loss due to depolymerization.

Since microtubules are in the bounded regime, their lifetime is short, and they disappear before

reaching an appreciable length. In sharp contrast to the standard model, we predict that asters are a

dynamic network of short microtubules with properties independent from the distance to the centro-

some. Thus, nucleation not only increases the number of microtubules, but also controls the growth

rate and spatial organization of asters enabling them to span length scales far exceeding the length

of an individual microtubule.

When J<0, a critical nucleation rate is required for aster growth (Figure 3B). Indeed, microtubules

constantly disappear as their length shrinks to zero, and the nucleation of new microtubules needs

to occur frequently enough to overcome the microtubule loss. Consistent with this argument, our

analytical solution predicts no aster growth below a certain value of nucleation (SI), termed critical

nucleation rate rc:

rc ¼ fcat �
vg

vs
fres: (5)

The right hand side of this equation is the inverse of the average time that a microtubule spends

in the growing state before shrinking to zero-length and disappearing (SI). Thus, aster growth

requires, on average, a microtubule to nucleate at least one new microtubule during its lifetime.

The dependence of the critical nucleation rate on model parameters is very intuitive. Increasing

the parameters in favor of polymerization (vg and fres), lowers the threshold level of nucleation

required for aster growth, while increasing the parameters in favor of depolymerization (vs and fcat)

has the opposite effect. We also find that rc ¼ 0 when J = 0, suggesting that there is no critical

nucleation rate for J � 0. This limit is consistent with the standard model with J>0 and r ¼ 0 where

the aster radius increases albeit with radial dilution of microtubule density (Figure 1B). The critical

nucleation rate conveys the main implication of our theory: the balance between polymerization

dynamics and autocatalytic nucleation defines the quantitative condition for continuous aster

growth.

Explosive transition to growth with a ‘gap velocity’
At the critical nucleation rate r ¼ rc, the aster velocity V takes a positive, nonzero value (Figure 3),

which we refer to as the ‘gap velocity’ (SI):

Vgap �
r!rc
limV ¼

�vgvsðvgfres � vsfcatÞ

v2gfresþ v2s fcat
: (6)

This finite jump in the aster velocity is a consequence of microtubules with finite length undergo-

ing dynamic instability and is in sharp contrast to the behavior of reaction-diffusion systems, where

traveling fronts typically become infinitesimally slow before ceasing to propagate (Chang and Fer-

rell, 2013; Hallatschek and Korolev, 2009; Méndez et al., 2007; van Saarloos, 2003). One can

understand the origin of Vgap>0 when microtubules are eliminated after a catastrophe event

(fres ¼ 0; J ¼�vs). In this limit, plus ends always expand with the velocity vg until they eventually col-

lapse. Below rc, this forward expansion of plus ends fails to produce aster growth because the
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number of plus ends declines on average. Right above rc, the number of plus ends is stable, and the

aster grows at the same velocity as every individual microtubule. Indeed, Equation (6) predicts that

Vgap ¼ vg when fres ¼ 0. The dynamics are similar for fres>0. At the transition, nucleation stabilizes a

subpopulation of microtubules expanding forward, and their average velocity sets the value of Vgap.

We also find that the magnitude of Vgap is inversely proportional to the mean length of microtubules

in the system (SI). Thus, the shorter the microtubules, the more explosive this transition becomes.

In the SI, we also show that microtubule density inside the aster is proportional to r � rc. Thus,

the density is close to zero during the transition from stationary to growing asters, but quickly

increases as the nucleation rate becomes larger. As a result, cells can achieve rapid aster growth

while keeping the density of the resulting microtubule network sufficiently low. The low density

might be beneficial because of its mechanical properties or because it simply requires less tubulin to

produce and energy to maintain. In addition, the explosive transition to growth with Vgap>0 allows

the cell to independently control the aster density and growth speed.

Model parameters other than the nucleation rate can also be tuned to transition asters from

growth to no growth regimes. Similar to Equation (5) and (6), one can define the critical parameter

value and gap velocity to encompass all such transitions (Appendix 4—table 1). In all cases, we find

that the onset of aster growth is accompanied by a discontinuous increase in the aster velocity. The

finite jump in aster velocity is similarly predicted in a wide range of alternative scenarios including (i)

feedback regulation of plus end dynamics (SI and Figure 3—figure supplement 1) and (ii) aster
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Figure 3. Explosive transition from stationary to growing asters and other theoretical predictions. Analytical solution (lines) and numerical simulations

(dots) predict that asters either remain stationary or expand at a constant velocity, which increases with the net polymerization rate J (A) and nucleation

rate r (B). The transition to a growing state is accompanied by a finite jump in the expansion velocity labeled as Vgap. (A) The behavior in the standard

model (r ¼ 0) is shown in blue and our model (r ¼ 1:5) in red. Note that aster growth commences at J<0 in the presence of nucleation and occurs at a

minimal velocity Vgap. Although spatial growth can occur for both J>0 and J<0 the properties of the resulting asters could be very different (see SI).

Here, vg ¼ 30; vs ¼ 30; fcat ¼ 3. (B) If J<0, critical nucleation rc is required to commence aster growth. Blue line corresponds to J >0 ðvg ¼ 30; vs ¼

15; fcat ¼ 3; fres ¼ 3Þ and red line to J <0 ðvg ¼ 30; vs ¼ 15; fcat ¼ 3; fres ¼ 1Þ. See Materials and methods and SI for the details of the analytical solution

and numerical simulations.

DOI: 10.7554/eLife.19145.006

The following figure supplements are available for figure 3:

Figure supplement 1. Feedback regulation of catastrophe rate leads to the same explosive transition.

DOI: 10.7554/eLife.19145.007

Figure supplement 2. Aster growth by polymer-stimulated nucleation leads to the same explosive transition.

DOI: 10.7554/eLife.19145.008
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growth by microtubule polymer-stimulated nucleation (SI and Figure 3—figure supplement 2). In

summary, the gap velocity is a general prediction of the collective behavior of microtubules that are

short-lived.

Titration of MCAK slows then arrests aster growth with evidence for a
gap velocity
Based on our theory, we reasoned that it would be possible to transform a growing interphase aster

to a small, stationary aster by tuning polymerization dynamics and/or nucleation via biochemical per-

turbations in Xenopus egg extract. To this end, we performed reconstitution experiments in undi-

luted interphase cytoplasm supplied with anti-Aurora kinase A antibody coated beads, which

nucleate microtubules and initiate aster growth under the coverslip (Field et al., 2014;

Ishihara et al., 2014a). We explored perturbation of various regulators for plus end dynamics and

nucleation. We settled on perturbation of MCAK/KIF2C, classically characterized as the main catas-

trophe-promoting factor in the extract system (Kinoshita et al., 2001; Walczak et al., 1996), and

imaged aster growth.

In control reactions, aster radius, visualized by the plus end marker EB1-mApple, increased at

velocities of 20.3±3.1 mm/min (n = 21 asters). We saw no detectable changes to aster growth with

the addition of the wild type MCAK protein. In contrast, addition of MCAK-Q710 (Moore and Wor-

deman, 2004) decreased aster velocity (Figure 4A and B). At concentrations of MCAK-Q710 above

320 nM, most asters had small radii with very few microtubules growing from the Aurora A beads. In

our model, this behavior is consistent with any change of parameter(s) that reduces the aster velocity

(Equation 4) and arrests growth.

At 320 nM MCAK-Q710 concentration, we observed bimodal behavior. Some asters increased in

radius at moderate rates, while other asters maintained a stable size before disappearing, presum-

ably due to the decrease of centrosomal nucleation over time (Figure 4—figure supplement 1 and

Ishihara et al., 2014a). In particular, we observed no asters growing at velocities between 0 and

9 mm/min (Figure 4B and Figure 4—figure supplement 1). This gap in the range of possible veloci-

ties is consistent with the theoretical prediction that growing asters expand above a minimal rate

Vgap.

To confirm that the failure of aster growth at high concentrations of MCAK-Q710 is caused by the

changes in aster growth rather than nucleation from the beads, we repeated the experiments with

Tetrahymena pellicles as the initiating centers instead of Aurora A beads. Pellicles are pre-loaded

with a high density of microtubule nucleating sites, and are capable of assembling large interphase

asters (Ishihara et al., 2014a). We found pellicle initiated asters to exhibit a similar critical concentra-

tion of MCAK-Q710 compared to Aurora A bead asters. While the majority of Aurora A beads sub-

jected to the highest concentration of MCAK-Q710 lost growing microtubules over time, a

significant number of microtubules persisted on pellicles even after 60 min (Figure 4—figure supple-

ment 2). The radii of these asters did not change, consistent with our prediction of stationary asters.

Thus, the pellicle experiments confirmed our main experimental result of small, stationary asters and

that the nature of transition is consistent with the existence of a gap velocity.

Finally, we asked which parameters in our model were altered in the MCAK-Q710 perturbation.

To this end, we measured the polymerization and catastrophe rates in interphase asters assembled

by Aurora A beads at various MCAK-Q710 concentrations. We imaged EB1 comets at high spatio-

temporal resolution, and analyzed their trajectories by tracking-based image analysis

(Applegate et al., 2011; Matov et al., 2010, Materials and methods). Neither the polymerization

nor the catastrophe rate changed at the MCAK-Q710 concentrations corresponding to the transition

between growing and stationary asters (Figure 4—figure supplement 3). MCAK-Q710 has been

reported to reduce microtubule polymer levels in cells (Moore and Wordeman, 2004), but its pre-

cise effect on polymerization dynamics and/or nucleation remains unknown. Our data are consistent

with the following three scenarios for how MCAK-Q710 antagonizes microtubule assembly: (i)

increased depolymerization rate, (ii) decreased rescue rate, and/or (iii) decreased nucleation rate.
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Discussion

An autocatalytic model of aster growth
It has not been clear whether the standard model of aster growth can explain the morphology of

asters observed in all animal cells, including those of extreme size (Mitchison et al., 2015). To

resolve this question, we constructed a biophysical framework that incorporates microtubule poly-

merization dynamics and autocatalytic nucleation. Numerical simulations and analytical solutions

(Figures 2 and 3, and Figure 3—figure supplements 1 and 2) recapitulated both stationary and

continuously growing asters in a parameter-dependent manner. Interestingly, the explosive transi-

tion from ‘growth’ to ‘no growth’ was predicted to involve a finite aster velocity, which we confirmed

in biochemical experiments (Figure 4).

Our biophysical model offers a biologically appealing explanation to aster growth and allows us

to estimate parameters that are not directly accessible: the rescue and autocatalytic nucleation rates.

For example, if we assume that MCAK-Q710 decreases the nucleation rate, we may use the Vgap

equation for r ! rc (Equation (6)), the equation for aster velocity V (Equation (4)), and our measure-

ments of vg, vs, fcat, V , and Vgap (Table 1) to simultaneously estimate fres and r. These results are sum-

marized in Table 1. Our inferred value of autocatalytic nucleation r = 2.1 min�1 is comparable to

previous estimates: 1.5 min�1(Clausen and Ribbeck, 2007) and 1 min�1 (Petry et al., 2013) in mei-

otic egg extract supplemented with RanGTP. In the alternative scenarios, where MCAK-Q710

decreases the catastrophe rate or increases the depolymerization rate, our estimates of r and fres are
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Figure 4. Titration of MCAK-Q710 slows then arrests aster growth through a discontinuous transition. (A) Addition of MCAK-Q710 results in smaller

interphase asters assembled by Aurora A beads in Xenopus egg extract. Images were obtained 20 min post initiation with the plus end marker EB1-

mApple. Dotted lines indicate the approximate outline of asters. (B) Aster velocity decreases with MCAK-Q710 concentration and then abruptly

vanishes as predicted by the model. Note a clear gap in the values of the observed velocities and bimodality near the transition, which support the

existence of Vgap. Quantification methods are described in methods and Figure 4—figure supplement 1.

DOI: 10.7554/eLife.19145.009

The following figure supplements are available for figure 4:

Figure supplement 1. Aurora A kinase bead asters at different MCAK-Q710 concentrations.

DOI: 10.7554/eLife.19145.010

Figure supplement 2. Pellicle asters at different MCAK-Q710 concentrations.

DOI: 10.7554/eLife.19145.011

Figure supplement 3. Plus end polymerization rate and catastrophe rate do not significantly change with MCAK-Q710 titration.

DOI: 10.7554/eLife.19145.012
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essentially the same (Appendix 8—table 1). Thus, our model recapitulates aster growth with reason-

able parameter values and offers a new understanding for how asters grow to span large cytoplasms

even when individual microtubules are unstable.

To date, few studies have rigorously compared the mechanistic consequences of plus-end-stimu-

lated vs. polymer-stimulated nucleation. Above, we presented the theoretical predictions for aster

growth by plus-end stimulated nucleation. In the SI, we also provide the results for polymer-stimu-

lated nucleation including the critical nucleation rate Equation A59. Both models of nucleation have

qualitatively similar behavior including the gap velocity and recapitulate experimental observations

of asters growing as traveling waves. Thus, in our case, the qualitative conclusions do not depend on

the precise molecular mechanism of autocatalytic nucleation. In particular, the explosive transition

characterized by the gap velocity is a general prediction of modeling microtubules as self-amplifying

elements whose lifetime depends on their length.

By carefully defining and quantifying autocatalytic nucleation, future studies may be able to distin-

guish its precise mechanism. With plus-end-stimulated nucleation, the nucleation rate r has units of

min�1 and describes the number of new microtubules generated per existing plus end per minute.

With polymer-stimulated nucleation, the nucleation rate has units of mm�1 min�1, and describes the

number of new microtubules generated per micron of existing microtubule per minute. This differ-

ence has important implications for the structural mechanism of microtubule nucleation and for the

prediction of cell-scale phenomena. For the issue of large aster growth, we propose specific experi-

ments that might be able distinguish these scenarios (SI).

Phase diagram for aster growth
How do large cells control aster size during rapid divisions? We summarize our theoretical findings

with a phase diagram for aster growth in Figure 5. Small mitotic asters are represented by stationary

asters found in the regime of bounded polymerization dynamics J<0 and low nucleation rates. These

model parameters must change as cells transition from mitosis to interphase to produce large grow-

ing asters. Polymerization dynamics becomes more favorable to elongation during interphase

(Belmont et al., 1990; Verde et al., 1992). This may be accompanied by an increased autocatalytic

nucleation of microtubules.

According to the standard model, increasing J to a positive value with no nucleation leads to

asters in the ’individual growth’ regime. A previous study suggested the interphase cytoplasm is in

the unbounded polymerization dynamics J>0 (Verde et al., 1992), but our measurements of param-

eters used to calculate J differ greatly (Table 1). The individual growth regime is also inconsistent

with the steady-state density of microtubules at the periphery of large asters in both fish and frog

embryos (Ishihara et al., 2014a; Wühr et al., 2008, 2010). Experiments in egg extracts further con-

firm the addition of new microtubules during aster growth (Ishihara et al., 2014a) contrary to the

predictions of the standard model. Furthermore, the presence of a high density of growing plus

ends in the interior of growing asters in egg extract suggests that microtubules must be short com-

pared to aster radius, and J must be negative, at least in the aster interior (Ishihara et al., 2014a).

By constructing a model that incorporates autocatalytic nucleation r>0, we discovered a new

regime, in which continuous aster growth is supported even when microtubules are unstable (J<0).

We call this the ‘collective growth’ regime because individual microtubules are much shorter (esti-

mated mean length of 16 mm ± 2 mm, Table 1) than the aster radius (hundreds of microns). Predic-

tions of this model are fully confirmed by the biochemical perturbation via MCAK-Q710. The finite

jump in the aster velocity (Figure 4) is in sharp contrast to the prediction of the standard models of

spatial growth (Fisher, 1937; Kolmogorov and Petrovskii, 1937; Skellam, 1951; van Saarloos,

2003). Spatial growth is typically modeled by reaction-diffusion processes that account for birth

events and random motion, which, in the context of microtubules, correspond to the nucleation and

dynamic instability of plus ends. Reaction-diffusion models, however, neglect internal dynamics of

the agents such as the length of a microtubule. As a result, such models inevitably predict a continu-

ous, gradual increase in the aster velocity as the model parameters are varied (Chang and Ferrell,

2013; Hallatschek and Korolev, 2009; Méndez et al., 2007; van Saarloos, 2003). The observation

of finite velocity jump provides a strong support for our model and rules out a very wide class of

models that reproduce the overall phenomenology of aster growth including the constant velocity

and profile shape (Figure 2). In particular, the observation of Vgap excludes the model that we
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previously proposed based on the analogy of aster growth and the Fisher-Kolmogorov equation

(Ishihara et al., 2014b). The implications of Vgap for model selection are further discussed in SI.

Collective growth of cytoskeletal structures
Our theory allows for independent regulation of aster growth rate and microtubule density through

the control of the nucleation rate and microtubule polymerization. Thus, cells have a lot of flexibility

in optimizing aster properties and behavior. The existence of a gap velocity results in switch-like

transition from quiescence to rapid growth and allows cells to drastically alter aster morphology with

a small change of parameters. Importantly, the rapid growth does not require high microtubule den-

sity inside asters, which can be tuned independently.

Collective growth produces a meshwork of short microtubules with potentially desirable proper-

ties. First, the network is robust to microtubule severing or the spontaneous detachment from the
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Figure 5. Phase diagram for aster growth. Aster morphology is determined by the balance of polymerization

dynamics and autocatalytic nucleation. Small, stationary asters (V ¼ 0), as observed during mitosis, occur at low

nucleation r and net depolymerization of individual microtubules (J<0). Net polymerization (J>0) without

nucleation (r ¼ 0) produces asters that expand at rate V ¼ J with dilution of microtubule density at the periphery

and are thus inconsistent with experimental observations. The addition of nucleation to the individual growth

regime changes these dynamics only marginally (yellow region); see SI. Alternatively, the transition from stationary

to growing asters can be achieved by increasing the nucleation rate, r, while keeping J negative. Above the critical

nucleation rate rc starts the regime of collective growth (V as in Equation (4), which is valid for r<fcat ) that

produces asters composed of relatively short microtubules (red region). The transition from stationary aster to

collective growth may be achieved by crossing the curve at any location, but always involves an explosive jump in

aster velocity, Vgap. The reverse transition recapitulates the results of our experimental perturbation of MCAK

activity (Figure 4) and mitotic entry (solid arrows). We propose this unified biophysical picture as an explanation

for the cell cycle dependent changes of aster morphology in vivo.

DOI: 10.7554/eLife.19145.013

Ishihara et al. eLife 2016;5:e19145. DOI: 10.7554/eLife.19145 12 of 36

Research article Biophysics and Structural Biology Cell Biology

http://dx.doi.org/10.7554/eLife.19145.013
http://dx.doi.org/10.7554/eLife.19145


centrosome. Second, the network can span arbitrarily large distances yet disassemble rapidly upon

mitotic entry. Third, the structure, and therefore the mechanical properties, of the network do not

depend on the distance from the centrosome. As a speculation, the physical interconnection of the

microtubules may facilitate the transduction of mechanical forces across the cell in a way unattain-

able in the radial array predicted by the standard model (Tanimoto et al., 2016; Wühr et al., 2010).

The regime of collective growth parallels the assembly of other large cellular structures from

short, interacting filaments (Pollard and Borisy, 2003) and is particularly reminiscent of how meio-

sis-II spindles self-assemble (Burbank et al., 2007; Brugués et al., 2012; Brugués and Needleman,

2014). Due to such dynamic architecture, spindles are known to have unique physical properties

such as self-repair, fusion (Gatlin et al., 2009) and scaling (Good et al., 2013; Hazel et al., 2013;

Wühr et al., 2008), which could allow for greater robustness and evolvability (Kirschner and Ger-

hart, 1998). Perhaps, collective growth is one of the most reliable ways for a cell to assemble cyto-

skeletal structures that exceed the typical length scales of individual filaments.

Materials and methods

Numerical simulations
We implemented a finite difference method with fixed time steps to numerically solve the continuum

model (Equation 3). The forward Euler’s discretization scheme was used except exact solutions of

advection equations was used to account for the gradient terms. Specifically, the plus end positions

were simply shifted by þvgdt for growing microtubules and by �vsdt for shrinking microtubules.

Nucleation added new growing microtubules of zero length at a position-dependent rate given by

QðxÞ. The algorithm was implemented using MATLAB (Mathworks).

Analytical solution
We linearized Equation 3 for small Cg and solved it using Laplace transforms in both space and

time. The inverse Laplace transform was evaluated using the saddle point method (Bender and Ors-

zag, 1999). We found the aster velocity as in Equation 4. The details of this calculation are summa-

rized in the Supporting Text (SI).

Aster velocity measurements
Interphase microtubule asters were reconstituted in Xenopus egg extract as described previously

with use of p150-CC1 to inhibit dynein mediated microtubule sliding (Field et al., 2014;

Ishihara et al., 2014a). Fluorescence microscopy was performed on a Nikon 90i upright microscope

equipped with a Prior Proscan II motorized stage. EB1-mApple was imaged every 2 min with a 10x

Plan Apo 0.45 N.A. or a 20x Plan Apo 0.75 N.A. objective. For the analysis of the aster growth front,

a linear region originating from the center of asters was chosen (Figure 4—figure supplement 1). A

low pass filter was applied to the fluorescence intensity profile and the half-max position, corre-

sponding to the aster edge, was determined manually. The analysis was assisted by scripts written in

ImageJ and MATLAB (Mathworks). Univariate scatter plots were generated with a template from

(Weissgerber et al., 2015). EB1-mApple were purified as in (Petry et al., 2011), used at a final con-

centration of 100 nM. In some experiments, MCAK or MCAK-Q710-GFP (Moore and Wordeman,

2004) proteins were added to the reactions. Protein A Dynabeads coated with anti-Aurora kinase A

antibody (Tsai and Zheng, 2005) or Tetrahymena pellicles were used as microtubule nucleating

sites.

Catastrophe rate measurements
Interphase asters were assembled as described above. Catastrophe rates and plus end polymeriza-

tion rates were estimated from time lapse images of EB1 comets that localize to growing plus ends

(Matov et al., 2010). The distributions of EB1 track durations were fitted to an exponential function

to estimate the catastrophe rate. Spinning disc confocal microscopy was performed on a Nikon Ti

motorized inverted microscope equipped with Perfect Focus, a Prior Proscan II motorized stage,

Yokagawa CSU-X1 spinning disk confocal with Spectral Applied Research Aurora Borealis modifica-

tion, Spectral Applied Research LMM-5 laser merge module with AOTF controlled solid state lasers:

488 nm (100 mW), 561 nm (100 mW), and Hamamatsu ORCA-AG cooled CCD camera. EB1-mApple
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was imaged every 2 s with a 60x Plan Apo 1.40 N.A. objective with 2�2 binning. EB1 tracks were

analyzed with PlusTipTracker (Applegate et al., 2011).

Video abstract
A 2 min video abstract of this paper is available at https://youtu.be/jfjA2S-fE9U.
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Appendix 1

A continuum model of aster growth
To describe our system of microtubules, we define the mean-field variable �gðt; x; lÞ which

represents the local density of growing plus ends of length l with its corresponding minus

end at position x at time t. Similarly, we define the shrinking plus end density �sðt; x; lÞ. We

assume that all microtubules have the same polarity, namely that all microtubules have their

plus ends pointing outwards. Given this polarity, the plus end position of a microtubule is

xþ l. We define nucleation as the birth of zero-length growing microtubules. The nucleation

rate is denoted by Qðt; xÞ. The evolution of our system is described as follows:

q�g
qt

¼ �vg
q�g
ql

� fcat�gþ fres�sþQðt;xÞ � dðlÞ;

q�s
qt

¼ þvs
q�s
ql

þ fcat�g � fres�s;

8

>

>

<

>

>

:

(A1)

where dðlÞ is the Dirac delta function. (Instead of a delta function as in Equation (A1), one

can introduce nucleation as a boundary condition specifying the flux of new microtubules

into the system, Qðt; xÞ ¼ vg�gðt; x; l ¼ 0Þ.) The above expression represents an infinite set of

equations valid for the continuum x � 0.

In general, the nucleation rate may depend on �g and �s. In the following sections, we

assume that nucleation proceeds as bifurcation of growing plus ends.

Nucleation is expressed as a logistic function of local growing plus end density with carrying

capacity of the system being K. (An alternative mechanism for autocatalytic nucleation is a

scenario where the local polymer density stimulates nucleation. This may better relate to

proposed models in which freely diffusing nucleation complexes bind to the side of pre-

existing microtubules and become activated. The nucleation term in Equation (A2) has the

advantage that the exact asymptotic solution may be obtained and we argue that it captures

the qualitative effect of autocatalytic nucleation.)

Qðt;xÞ ¼ vg �gðt; x; l¼ 0Þ ¼ r �Cgðt;xÞ 1�
Cgðt;xÞ

K

� �

; (A2)

where Cgðt; xÞ denotes the local growing plus end density at position x and time t. By

equating the plus end density times the surface area of a sphere of radius x to the

integration of �gðt; x; lÞ whose plus ends happens be positioned at distance x , we obtain the

following expression for local growing plus end density:

Cgðt;xÞ ¼

Z þ¥

0

dl

Z x

0

dx� �gðt;x�; lÞ � dðx� x�� lÞ (A3)

Similarly, we define the shrinking plus end density Csðt; xþÞ.

In higher dimensions, Equation (A3) generalizes as follows

Cgðt; jxjÞ ¼
1

jxjd�1

Z þ¥

0

dl

Z jxj

0

djx�j�gðt; jx�j; lÞ � dðjxj� jx�j� lÞ jxjd�1; (A4)

where we have assumed spherical geometry.
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Appendix 2

Bounded and unbounded regimes of polymerization
dynamics
In the absence of nucleation (r ¼ 0), the dynamics of our system is goverened solely by

microtubule plus end dynamics. One distinguishes two types of growth: bounded and

unbounded. In the former case, the mean polymerization rate J ¼
vgfres�vs fcat
fresþfcat

is negative and

microtubules shrink on average. In the latter case, J is positive and microtubule become

progressively longer. J is essentially the directional bias of the plus end dynamics, the drift

term of the biased random walk (Bicout, 1997; Dogterom and Leibler, 1993; Verde et al.,

1992).

Imagine a scenario where there is a fixed number of microtubules in the system, and that all

their minus ends are at the origin. Further, let us assume that when plus ends shrink back to

their minus ends, they instantly transition to a growing state, akin to a reflective boundary

condition at the origin. When J<0, the system will reach a steady-state where the length of

individual microtubules are found to be exponentially distributed with an average length of

hli ¼
�vgvs

vgfres�vs fcat
. When J>0; eventually all microtubules will be long enough with their plus ends

far from the origin. Thus, there is no steady-state length distribution and the average length

increases at rate J.
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Appendix 3

Aster growth dynamics with autocatalytic microtubule
nucleation
Here, we analyze the behavior of the system when polymerization dynamics and autocatalytic

microtubule nucleation are allowed. Our intuition is that microtubule nucleation will produce

microtubules at distances far from the origin, and that with high enough nucleation, the

population of microtubules will start to move away from the origin as a self-propagating

wave. Waves with growth terms that monotonically decline with density are called pulled

fronts, and can be analyzed through linearization (van Saarloos, 2003). This is the case for

the microtubule nucleation specified by Equation (A2), and the full analytical solution for the

spatiotemporal evolution can be obtained. In particular, we find the asymptotic front

velocity of microtubules as a function of model parameters. This leads us to the concept of

the critical nucleation rate, which summarizes the condition that determines aster growth

(linear increase in radius) vs. no growth (constant radius). Other feedback mechanisms in

r; fcat; v g; etc: lead to the same final equations where all parameters are specified at low

density (see Appendix 7 for an extended discussion).

Solution of the system
We apply the Laplace transform to Equation (A1) in the following way: time domain t ! s,

spatial domain x ! k and length domain l ! q. Our system recast in �gðs; k; qÞ and �sðs; k; qÞ

becomes

s�g � �gðt¼ 0;k;qÞ ¼�vgq�g þ vg�gðs;k; l¼ 0Þ� fcat�g þ fres�s;

s�s� �sðt¼ 0;k;qÞ ¼þvsq�s � vs�sðs;k; l¼ 0Þþ fcat�g � fres�s:

�

(A5)

We can not directly solve the system Equation (A5) for �gðs; k; qÞ and �sðs; k; qÞ as �gðs; k; l ¼

0Þ and �sðs; k; l ¼ 0Þ are unknown. However, we demonstrate that the system can be closed

for the local plus end densities Cgðs; kÞ and Csðs; kÞ when the nucleation rate depends on

�gðt; k; lÞ and �sðt; k; lÞ as in Equation (A2). We substitute this solution back to Equation (A5)

and obtain the full solution of the system in terms of �g and �s.

First, let us consider the transformation of Cgðt; xÞ in the spatial domain x ! k.

Cgðt;kÞ ¼

Z þ¥

0

e�kxdxCgðt;xÞ

¼

Z þ¥

0

e�kxdx

Z þ¥

0

dl

Z þ¥

0

dxdðx� x� � lÞ�gðt;x�; lÞ

¼

Z þ¥

0

Z þ¥

0

dxdl �gðt;x; lÞ e
�kxe�kl

¼

Z þ¥

0

dl�gðt;k; lÞ e
�kl

¼ �gðt;k;q¼ kÞ

(A6)

We apply the same transform to Csðt; xÞ and obtain the following:

Cgðs;kÞ ¼ �gðs;k;kÞ and Csðs;kÞ ¼ �sðs;k;kÞ (A7)
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Thus, we find that the local plus end density Cgðs; kÞ is equivalent to a special subset of

�gðs; k; qÞ that is �gðs; k; kÞ, where the spatial and length domains are coupled. By applying

Equation (A7) and k ¼ q to Equation (A5), we obtain

sCg �Cgðt¼ 0;kÞ ¼�vgkCg þ vg�gðl¼ 0Þ� fcatCg þ fresCs;

sCs�Csðt¼ 0;kÞ ¼þvskCs � vs�sðl¼ 0Þþ fcatCg � fresCs:

�

(A8)

Note that the term corresponding to growing plus ends at l ¼ 0 is equivalent to our

definition of nucleation rate Equation (A2). Here, we substitute the linearized form of the

boundary condition with Equation (A2), vg �gðs; k; l ¼ 0Þ ¼ r � Cgðs; kÞ, which is valid for small

Cg or at the leading edge of the aster. The term corresponding to shrinking plus ends at l ¼

0 is not directly specified in our system. The value of vs�sðl ¼ 0Þ can be obtained from a

special condition required for physical consistency as we show below. For now, we will treat

�sðl ¼ 0Þ as known.

From the initial conditions �0g ¼ �gðt ¼ 0; k; qÞ and �0s ¼ �sðt ¼ 0; k; qÞ, we know Cgðt ¼ 0; kÞ ¼

�gðt ¼ 0; k; kÞ and Csðt ¼ 0; kÞ ¼ �sðt ¼ 0; k; kÞ. We arrive at the subproblem:

Ar

Cgðs;kÞ

Csðs;kÞ

� �

¼
�gðt¼ 0;k;kÞ

�sðt¼ 0;k;kÞ� vs�sðl¼ 0Þ

� �

;

where Ar ¼
sþ vgkþ fcat � r �fres

�fcat s� vskþ fres

� �

:

(A9)

This system is solved by matrix inversion. The solution for growing plus end density is

Cgðs;kÞ ¼
1

detðArÞ
Ar;22�gðt¼ 0;k;kÞ�Ar;12ð�sðt¼ 0;k;kÞ� vs�sðl¼ 0ÞÞ
� �

: (A10)

With the knowledge of Cgðs; kÞ, we proceed to find the general solution for �gðs; k; qÞ by

returning to the full problem Equation (A1). Arranging the known quantities to the right

hand side, the rewritten problem reads

A
�gðs;k;qÞ

�sðs;k;qÞ

� �

¼
�0gþ rCgðs;kÞ

�0s � vs�sðl¼ 0Þ

 !

;

where A¼
sþ vgqþ fcat �fres

�fcat s� vsqþ fres

� �

:

(A11)

For the solution of plus end density, we substitute our solution of Cgðs; kÞ and obtain

�gðs;k;qÞ ¼
1

detðAÞ
A22ð�

0

g þ rCgðs;kÞÞ�A12ð�
0

s � vs�sðl¼ 0ÞÞ
h i

¼
1

detðAÞ
A22�

0

g �A12�
0

s

� �

þ
A12

detðAÞ
vs�sðl¼ 0Þþ

1

detðAÞ

rA22

detðArÞ
Ar;22�gðt¼ 0;k;kÞ�Ar;12�sðt¼ 0;k;kÞþAr;12vs�sðl¼ 0Þ
� �

¼ 1

detðAÞ A22�
0

g �A12�
0

s

� �

þ vs�sðl¼ 0Þð A12

detðAÞþ
rA22Ar;12

detðAÞdetðArÞ
Þ

þ
rA22

detðAÞdetðArÞ
ðAr;22�gðt¼ 0;k;kÞ�Ar;12�sðt¼ 0;k;kÞÞ

(A12)
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Physical plausibility at l ! ¥

In Equation (A12), we still have one unknown �sðl ¼ 0Þ, which we determine by imposing a

physical plausibility condition. Namely, we impose that the number of infinitely long

microtubules are zero by requesting that the solution �g (and �s) decays as l ! ¥. To obtain

�sðl ¼ 0Þ, we apply the inverse Laplace transform q ! l,

�gðs;k; lÞ ¼
1

2pi

Z gþi¥

g�i¥

eqldq �gðs;k;qÞ

¼
P

j qj
Res e

qjl�gðs;k;qjÞ
(A13)

Note that the only term that depends on q and can give rise to a residue in Equation (A12)

is detðAÞ. The condition detðAÞ ¼ 0 is equivalent to

q2vgvs� q½sðvg� vsÞþ vgfres� vsfcat�� ½s2 þ sðfcat þ fresÞ� ¼ 0 (A14)

This equation has two roots qþ>0 and q�<0, since

qþq� ¼�
s2þ sðfcat þ fresÞ

vgvs
<0: (A15)

Therefore, the �gðs; k; lÞ takes the form �gðs; k; lÞ ¼ eqþl�gðs; k; qþÞ þ eq� l�gðs; k; q�Þ.

We require that �gðs; k; lÞ takes a finite value in the limit of l ! ¥ by setting the coefficient

for eqþ l to zero, in other words �gðs; k; qþÞ ¼ 0. Thus, with Aþ denoting matrix A when q ¼ qþ

and �0;þg ¼ �gðt ¼ 0; k; qþÞ, we request the following condition:

Aþ
22
�0;þg �Aþ

12
�0;þs þ vs�sðl¼ 0ÞðAþ

12
þ
rAþ

22
Ar;12

detðAÞ
Þ

þ
rAþ

22

detðAÞ
ðAr;22�gðt¼ 0;k;kÞ�Ar;12�sðt¼ 0;k;kÞÞ ¼ 0

(A16)

Recall that �sðl ¼ 0Þ was introduced as an unknown in our system via Laplace transform

despite the absence of a bona fide boundary condition for shrinking microtubules of length

zero. We may now solve the above equation (Similar arguments were previously used by

(Bicout, 1997) in the context of bounded, non-expanding, asters) for �sðl ¼ 0Þ, and

substitute it to Equation (A12), resulting in our final solution

�gðs;k;qÞ ¼
A22�

0

g �A12�
0

s

detðAÞ
þ
rA22ðAr;22�gðt¼ 0;k;kÞ�Ar;12�sðt¼ 0;k;kÞÞ

detðAÞdetðArÞ

þ 1

detðAÞdetðArÞ
�
A12detðArÞþrA22Ar;12

Aþ
12
detðArÞþrAþ

22
Ar;12

�
�

� �0;þg Aþ
22
detðArÞ

��gðt¼ 0;k;kÞrAþ
22
Ar;22þ �0;þs Aþ

12
detðArÞþ �sðt¼ 0;k;kÞrAþ

22
Ar;12

�

:

(A17)

Summary of solutions Cgðs; kÞ and �gðs; k; qÞ
Assuming of microtubule nucleation as in Equations (A2) and (A3), we have derived the full

solution for �gðs; k; qÞ written as Equation (A17). The solution for �sðs; k; qÞ may be derived

similarly. These solutions directly correspond to the plus end density solutions Cgðs; kÞ ¼

�gðs; k; kÞ and Csðs; kÞ ¼ �sðs; k; kÞ. Direct experimental measurements are available for Cgðt; xÞ.
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As we are primarily interested in the velocity at which the front of plus ends advance in the

long time limit, we proceed with our analysis focusing on the behavior of Cgðt; xÞ.
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Appendix 4

Critical transition to aster growth

Dispersion relations for Cgðt; xÞ
We wish to determine the velocity at which the aster expands its radius. We apply the inverse

Laplace transform s ! t to Cgðt; kÞ

Cgðt;kÞ ¼
1

2pi

Z gþi¥

g�i¥

estds Cgðs;kÞ

¼
X

j

ResCgðsjðkÞ;kÞe
sjðkÞt

; (A18)

where the subscript j specifies the different poles in Cgðs; kÞ. Further, we apply the inverse

Laplace transform k ! x;

Cgðt;xÞ ¼
1

2pi

Z gþi¥

g�i¥

exkdkCgðt;kÞ

¼
1

2pi

Z gþi¥

g�i¥

dk
X

j

ResCgðsjðkÞ;kÞe
sjðkÞtexk

(A19)

Finally, we transform the spatial variable to the right moving reference frame z ¼ x� Vt

where V>0 is the aster velocity we wish to determine,

Cgðt; zÞ ¼
1

2pi

Z gþi¥

g�i¥

dk
X

j

ResCgðsjðkÞ;kÞe
sjðkÞteðzþVtÞk

¼
1

2pi

Z gþi¥

g�i¥

dk
X

j

ResCgðsjðkÞ;kÞe
kzeðsjðkÞþkVÞt

(A20)

We must evaluate this integral in the long time limit t ! ¥ which corresponds to the solution

that describes the front of the expanding aster. Note that the integral takes the form of
R

f ðkÞetgjðkÞdk where t is large. We follow ’steepest descent’ or ’saddlepoint method’ and

approximate the integral by the contribution from the saddlepoint k� for gjðkÞ ¼ sjðkÞ � kV .

We also impose a time invariance condition by requesting the real part of gjðkÞ to be zero at

this point. In other words, the conditions that yield the asymptotic solution are:

dðsjðkÞþ kVÞ

dk
jk¼k� ¼ 0

Reðsjðk
�Þþ k�VÞ ¼ 0

8

<

:

(A21)

These two equations together with the equation that specifies the poles allow us to specify

the pairs of sj and k that describes the shape and velocity of the expanding front.

We return to Equation (A17) and examine how poles could arise. There are three

possibilities detðAÞ ¼ 0, detðArÞ ¼ 0, and Aþ
12
þ

rAþ
22
Ar;12

detðArÞ
¼ 0. We examine them in order:

. detðAÞ ¼ 0 , k ¼ qþ is not a pole, since A22 ! Aþ
22
, �gðt ¼ 0; k ¼ qþ; k ¼ qþÞ ¼ �0;þg , etc. and

the relevant numerator becomes zero, i.e. Cgðs; kÞ is not singular and there is no residue.

. detðArÞ ¼ 0 does not lead to a pole either because the second and the third term in

Equation (A17) cancel.

Ishihara et al. eLife 2016;5:e19145. DOI: 10.7554/eLife.19145 23 of 36

Research article Biophysics and Structural Biology Cell Biology

http://dx.doi.org/10.7554/eLife.19145


. Aþ
12
þ

rAþ
22
Ar;12

detðArÞ
¼ 0 , detðArÞ ¼ �rðs� vsqþ þ fresÞ is a pole.

Thus, the only pole of the equation Equation (A17), detðArÞ ¼ �rðs� vsqþ þ fresÞ, specifies

the asymptotic, traveling front solution of our system.

Aster velocity
The velocity of the aster growth is derived from the conditions imposed by Equation (A21).

It is easy to see that both s� and k� are real numbers, so we rewrite these conditions as

follows:

V ¼�
d sðkÞ

dk
jk¼k�

i
¼�

s�

k�
(A22)

In the proceeding section, we denote s� as s and k� and k for simplicity. The pole is specified

by detðArÞ ¼ �rðs� vsqþ þ fresÞ ,

ðsþ vgkþ fcat � rÞðs� vskþ fresÞ� fresfcat ¼�rðs� vsqþ þ fresÞ ,

s2 þ½ðvg � vsÞkþ fcat þ fres�sþ½�vgvsk
2 þðvgfres � vsfcat þ vsrÞk� vsrqþ� ¼ 0

(A23)

Collectively, Equations (A14), (A22), and (A23) specifies the four unknowns, s, k, qþ; and

V .

Since Equations (A14) and (A23) become identical when k ¼ qþ, we reject this trivial case.

Then, these two equations lead us to

k¼
ðvg � vsÞsþðvgfres� vsfcat þ vsrÞ

vgvs
� qþ: (A24)

Differentiating Equation (A24), we find

dk

ds
¼
vg � vs

vgvs
�
dqþ

ds
: (A25)

Dividing Equation (A24) by s, we find

k

s
¼
vg � vs

vgvs
þ
vgfres� vsfcat þ vsr

vgvs
�
1

s
�
qþ

s
: (A26)

Using Equation (A22), we equate Equations (A25) and (A26) and find,

dqþ

ds
¼
qþ

s
�
vgfres� vsfcat þ vsr

vgvs
�
1

s
: (A27)

Differentiating Equation (A14) by s, we solve for dqþ
ds

and find,

dqþ

ds
¼

ðvg � vsÞqþ þ 2sþ fcat þ fres

2qþvgvsþðvg� vsÞsþ vgfres � vsfcat
: (A28)

Eliminating dqþ
ds

from equations (A27) and (A28), we obtain
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qþ ¼
ðvgfres � vsfcat þ vsrÞðvgfres� vsfcatÞþ sðv2gfresþ v2s fcat þ vsrðvg � vsÞÞ

vgvsðvgfres� vsfcat þ 2vsrÞ
:

We substitute this into Equation (A14), and choose the positive root for s.

s ¼
1

ðfcat � rÞðvgþ vsÞðvgfres þ vsrÞ
�
�

rðvgfresþ vsfcatÞðvgfres� vsfcat þ vsrÞ

þðvgfres� vsfcat þ 2vsrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgfcatfresrðvgfres� vsfcat þ vsrÞ
p

�

(A29)

Using Equation (A24), we find

k ¼
�1

vgðfcat � rÞðvg þ vsÞðvgfresþ vsrÞ
�
�

rðvgfres� vsfcat þ vsrÞðvgðfres� fcat þ rÞþ vsrÞ

þðvgðfresþ fcat � rÞþ vsrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgfcatfresrðvgfres� vsfcat þ vsrÞ
p

�

(A30)

k determines the rate of spatial decay of the density at the front, which follows from

Equation (A20).

We require r<fcat as k
� diverges at r ¼ fcat. The velocity of the propagating front is then given

by

V ¼�
s

k
¼

vgðvgfres� vsfcatÞ
2

vgðvgfres� vsfcatÞðfresþ fcatÞþ ðvgþ vsÞðvgfresþ vsfcatÞr

�2ðvgþ vsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgfcatfresrðvgfres� vsfcat þ vsrÞ
q

0

@

1

A

: (A31)

Our expression is valid for the range rc � r � fcat. For r<rc, the aster fails to expand and

reaches a steady state size with limited radius. For r>fcat, we expect some microtubules or

the microtubules they nucleated to polymerize without ever experiencing a growth to

shrinkage transition. In this scenario, we expect the very periphery of the aster to expand at

polymerization rate vg. We discuss rc in more detail in the following section.

For the special case of J ¼ 0, Equation (A31) has the numerator equal to zero, so we return

to Equations (A29) and (A30) and find the aster velocity as:

V ¼
vgðvgfres þ vsfcat þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgvsfcatfres
p

Þ

vgðfres� fcat þ rÞþ vsrþ
vgðfresþfcat�rÞþvsr

vsr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgvsfcatfres
p

(A32)

Critical nucleation rate and gap velocity
We define the critical nucleation rate rc as the minimum value of nucleation r at which the

system results in front propagation. As seen in Equation (A31), the aster expansion velocity

takes a real value as long as the term inside the square root of vgfres � vsfcat þ vsr is positive.

For r<rc, there is no real solution for V , while, for r>rc, a pair of solutions exists. One of

them predicts that V decreases with r and is therefore unphysical. Equation (A31) specifies

other solution of this pair.

The critical nucleation rate is:

rc ¼ fcat �
vg

vs
fres (A33)
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When r ¼ rc, aster expansion velocity takes a finite value, which we term the ‘gap velocity’.

Vgap ¼
r!rc
limV ¼

vgvsð�vgfresþ vsfcatÞ

v2gfresþ v2s fcat
(A34)

Note that new microtubules nucleate only on growing plus ends; therefore, nucleation

events preferentially occur on microtubules that are in the growing state more often than

expected on average. As a result, the subpopulation of microtubules stabilized by nucleation

expands at a velocity larger than that of a typical microtubule. In fact, the velocity of a

typical microtubule is J, which is negative, while the velocity of the subpopulation of

microtubules that sets Vgap is positive.

We also find that Vgap is inversely proportional to the mean microtubule length hli,

Vgap ¼
vgvs

v2gfresþ v2s fcat
�
vgfres� vfcat

�vgvs
� vgvs

¼
v2gv

2

s

v2gfresþv2s fcat
� 1

hli :

(A35)

This points to us that the origin of Vgap is the finite length of microtubules in the system. The

shorter the microtubules are, the more explosive the transition becomes.

In a similar manner, we can define the critical transition with respect to any of the five

parameters in the system. Thus, we expand our definition of gap velocity to encompass all

such limits. The gap velocities defined by the change of a single parameter are listed in

Appendix 4—table 1.

Appendix 4—table 1. Gap velocities defined by different critical parameters.

Critical parameter Vgap

rc ¼ fcat �
vg

vs
fres

vgvsð�vgfres þ vsfcatÞ

v2gfres þ v2s fcat

vg;c ¼ vs
fcat � r

fres

rðfcat � rÞvs
f 2cat þ fcatðfres � 2rÞ þ r2

vs;c ¼ vg
fres

fcat � r

rfresvg

f 2cat þ fcatðfres � 2rÞ þ r2

fcat;c ¼ r þ
vg

vs
fres

rvgv
2

s

rv2s þ fresvgðvg þ vsÞ

fres;c ¼
vs

vg
ðfcat � rÞ

rvgvs

�rvg þ fcatðvg þ vsÞ

DOI: 10.7554/eLife.19145.014

Aster growth dynamics when J>0
Past the transition to the traveling wave regime, further changes in model parameters can

make the mean polymerization rate J positive. At this point, aster velocity shows no

unexpected behavior and changes smoothly as J changes sign (Figure 3A). The bulk state

of the aster could, however, be affected by the sign of J, depending on the mode of

negative feedback (see Appendix 6 for detailed discussion). When negative feedback

promotes depolymerization at high microtubule density, J<0 in the bulk and asters are

composed of short microtubules that are created through nucleation and lost through

depolymerization. Thus, dynamics are essentially the same as when J<0 both at the front

and at the bulk. When negative feedback simply arrests nucleation in the bulk, individual

microtubules begin to span the entire aster as in the standard model. The observations of
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newly nucleated plus ends during aster growth exclude this latter scenario (Ishihara et al.,

2014a) .

Ishihara et al. eLife 2016;5:e19145. DOI: 10.7554/eLife.19145 27 of 36

Research article Biophysics and Structural Biology Cell Biology

http://dx.doi.org/10.7554/eLife.19145


Appendix 5

Microtubule lifetime
Consider a single microtubule nucleated at time t ¼ 0. Let �gðt; lÞ denote the probability that it is

of length l at time t and in a growing state. Similarly, �sðt; lÞ is for the shrinking state. Then,

q�g
qt

¼�vg
q�g
ql

� fcat�g þ fres�s;

q�s
qt

¼þvs
q�s
ql

þ fcat�g � fres�s;

8

>

>

<

>

>

:

(A36)

with initial conditions �gðt ¼ 0; lÞ ¼ dðlÞ and �sðt ¼ 0; lÞ ¼ 0.

Assuming bounded dynamics J<0, we apply Laplace transforms t ! s and l ! q, and solve

the problem as before. The result reads

�gðs;qÞ ¼
1

vg

1

q� q�ðsÞ
; (A37)

where q� is the negative root of the quadratic equation (A14).

Now, the average time spent in the growing state tg is given by

tg ¼
R R

�gðt; lÞdldt

¼ �gðs¼ 0;q¼ 0Þ

¼ �1

vg

vgfres�vsfcat
vgvs

� ��1

¼ vs
vsfcat�vgfres

:

(A38)

The last expression above is identical to the inverse of the critical nucleation rate. Thus,

tgrc ¼ 1 specifies the equation for the critical nucleation rate, which can be interpreted as

the requirement for an average microtubule to nucleate one other microtubule during its

lifetime.

Analogously, for the average time spent in the shrinking state ts, we find

ts ¼
vg

vsfcat � vgfres
: (A39)

Note that ts
tg
¼

vg
vs
. We can also obtain total lifetime of the microtubule t by summing over its

lifetimes in the growing and shrinking states:

t¼ tgþ ts ¼
vg þ vs

vsfcat � vgfres
: (A40)

This result is identical to that of Bicout (Bicout, 1997) who did not consider the lifetimes of

growing and shrinking microtubules separately.
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Appendix 6

Plus end density in the aster interior
In the interior region of a growing aster, the density of microtubule plus ends and microtubule

length distribution are stationary and independent of position. As a result, the increase in

the number of microtubules due to nucleation must equal microtubule loss. For growing

microtubules, the rate of loss is given by 1

tg
(see Equation A38) while the rate of gain is

simply the nucleation rate. Thus,

rbulk ¼
1

tbulkg

: (A41)

Nucleation changes with plus end density
Logistic function is a commonly used mechanism for negative feedback in the context of

expanding populations (see (Korolev, 2013) for an example). In Equation (A2), it takes the

following form

r¼ r0 1�
Cg

K

� �

; (A42)

where r0 is the nucleation rate at low plus end densities, and K sets the scale of Cg when the

negative feedback becomes appreciable, resulting in stationary plus end density. The

balance between microtubule production and loss given by Equation (A41) results in the

following expression for the plus end density in the bulk

Cb
g ¼K

r� rc

r

� �

; (A43)

where we used the fact that 1

tbulkg
¼ rc.

Michaelis-Menten type kinetics is an alternative functional form for the negative feedback

that could arise, for example, due to the limitation of a nucleating factor,

r¼
r0

1þ
Cg

K

: (A44)

This results in the following plus end density:

Cb
g ¼K

r� rc

rc

� �

: (A45)

In either case, Cb
g is proportional to r � rc close to the transition. Fluctuations in Cb

g due to

the stochasticity of microtubule nucleation and collapse can alter this behavior to ðr � rcÞ
b,

where b is the corresponding exponent of a non-equilibrium transition. This transition most

likely belongs to the directed percolation universality class (Hinrichsen, 2000). Note that the

critical nucleation rate used here is the same as in Equation (5). In particular, all the values

of all the model parameters are obtained in the limit of small Cg, i.e. at the edge of the

aster.
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Catastrophe rate changes with plus end density
Instead of changing the nucleation rate, the cell can promote microtubule depolymerization to

ensure that the bulk density does not grow indefinitely. Consider the negative feedback

such that the nucleation is constant throughout the aster. Specifically, the nucleation term is

simply proportional to the local density of growing plus ends as in

Qðt;xÞ ¼ r �Cgðt;xÞ; (A46)

while we implement the feedback regulation in the catastrophe rate,

fcat ¼ f 0cat 1þ
Cg

K

� �

: (A47)

Here, f 0cat corresponds to the catastrophe rate at the leading edge of the growing aster

where Cg is small and K specifies the plus end densities at which the negative feedback

becomes appreciable.

The balance between the constant nucleation rate and the loss rate that increases with the

plus end densities leads to the following solution for the steady-state density in the bulk:

Cb
g ¼K

r� rc

f 0cat

� �

: (A48)

Note that the critical nucleation rate used here is the same as in Equation (5). In particular,

all the values of all the model parameters are obtained in the limit of small Cg, i.e. at the

edge of the aster.

Depolymerization rate changes with plus end density
As a final example, we consider a situation where the nucleation is constant as in

Equation (A46), while the depolymerization rate increases with plus end density,

vs ¼ v0s 1þ
Cg

K

� �

: (A49)

Here, v0s corresponds to the depolymerization rate at the leading edge of the growing aster

where Cg is small. For this feedback mechanism, we find

Cb
g ¼K

r� rc

fcat � r

� �

: (A50)

In the above four examples we found that close to the onset of aster growth the bulk

density is proportional to r � rc, and it is easy to see that this is true regardless of the

feedback mechanism. Indeed, at the critical transition, the nucleation barely keeps up with

loss at the front; thus, an infinitesimal increase in density and the corresponding negative

feedback would alter the balance and Cg must be zero at r ¼ rc. As a result, Cb
g is

proportional to r � rc just above to the transition. In contrast, the expansion velocity near

the transition does not vanish and remains at a high value specified by Vgap. In consequence,

the cell can control the density of the microtubules in the aster and, therefore, its

mechanical properties by small changes in the nucleation rate without significantly altering

the kinetics of aster growth.
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Appendix 7

Other types of feedback regulation lead to the same
explosive transition
Apart from the carrying the capacity on nucleation kinetics considered above, other forms of

negative feedback on the system are possible. This may include scenarios such as decreasing

polymerization rate or increasing catastrophe rate with a higher local density of

microtubules. Feedback regulation at higher microtubule densities is important in the

interior of the growing aster while the linearized equations solved above capture the

dynamics of the leading edge. Thus, different forms of feedback regulation lead to the same

critical transition predicted by Equations (5) and (A31).

Consider one such alternate scenario for (A1) as described in Appendix 6. Catastrophe rate

changes with plus end density. Here, the negative feedback is implemented at the level of

catastrophe rate instead of nucleation. We numerically solved the partial differential

equations under these assumptions. Similar to the previous case, we observed the

emergence of propagating fronts in a parameter dependent manner (Figure 3—figure

supplement 1A). Although the shape of the propagating front is different, the aster velocity

is again in excellent agreement with our analytical solution (Figure 3—figure supplement

1B).
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Appendix 8

Estimation of unknown parameters fcat and r
By combining analytical solutions and experimental measurements in frog egg extract, we

estimate the values of unknown parameters in our model. Given our direct measurements

for vg, vs, fcat, V , and Vgap , we have two unknowns fcat and r. To simultaneously estimate

these values, we need two equations.

The first is the aster velocity Equation (A31). For the second equation, we use one of the

equations for Vgap as shown in Appendix 4—table 1, which correspond to different

assumptions on how Vgap was achieved by the MCAK-Q710 perturbation. The result of the

parameter estimations is summarized in Appendix 8—table 1. In all scenarios, the values of

fres and r are in relative agreement.

Appendix 8—table 1. Estimated parameter values for different scenarios on how MCAK-Q710

arrested aster growth. Different expressions for Vgap shown in Appendix 4—table 1 were used.

In all cases, the values of vg, vs, fcat, V , and Vgap were the same as in Table 1.

Estimated parameter Units r ! rc fres ! fres;c vs ! vs;c

fres min�1 2.0�0.3 3.0�0.7 3.0�0.7

r min�1 2.1�0.2 1.9�0.2 1.8�0.2

K mm�1 0.053�0.030 0.12�0.09 0.15�0.10

hli mm 16�2 32�34 39�44

DOI: 10.7554/eLife.19145.015
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Appendix 9

Aster growth by polymer-stimulated nucleation of
microtubules
In this Appendix, we consider a scenario where microtubule nucleation is stimulated by the local

density of polymer rather than the density of growing plus ends. Although we have not

obtained the analytical solution for this scenario, we derive the expression for the critical

nucleation rate for aster growth and confirm these results by numerical simulations.

Importantly, the transition from stationary to growing asters is predicted to have a finite

jump in velocity.

Critical nucleation rate for polymer-stimulated nucleation
Let p denote the polymer-stimulated nucleation rate with units ½time�1 microtubule length�1�. A

microtubule of length l will nucleate p l dt microtubules in time dt.

To derive the critical nucleation rate pc for aster growth, we require that a single microtubule

during its entire lifetime must nucleate at least one microtubule:

pc

Z

¥

0

dt

Z

¥

0

dl l�ðt; lÞ ¼ 1; (A51)

where �ðt; lÞ denotes the local density of all plus ends. As plus ends are either in the growing

or shrinking states, �ðt; lÞ ¼ �g þ �s.

By using Laplace transforms in the left hand side of Equation (A51), we obtain

Z

¥

0

dt

Z

¥

0

dl l�ðt; lÞ ¼

Z

¥

0

�ðs¼ 0; lÞ l dl¼�
d�ðs¼ 0;qÞ

dq
jq¼0

: (A52)

Thus, we may solve for the desired critical nucleation rate as pc ¼ � d�ðs¼0;qÞ
dq

jq¼0

� ��1

.

We have previously obtained the expression for �g in Equation (A37). To obtain the

equivalent expression for �s, we return to the dynamic equation Equation (A36) and apply

the Laplace transforms t ! s and l ! q,

s�g � 1¼�vgq�g� fcat�g þ fres�s; (A53)

which yields,

�sðs;qÞ ¼
�gðsþ vgqþ fcatÞ� 1

fres
: (A54)

Combining Equation (A37) and (A54), we obtain

�ðs;qðsÞÞ ¼ �gþ �s ¼�
1

fres
þ
sþ vgqðsÞþ fcat

vgfres
�

1

qðsÞ� q�
þ

1

vg
�

1

qðsÞ� q�
: (A55)

Differentiating and setting q ¼ 0, we find
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�
d�ðs¼ 0;qÞ

dq
jq¼0

¼
1

vgfres
�
vgq� þ fcat

q2�
þ

1

vg
�
1

q2�

¼ 1

vgq2�
1þ fcat

fres

� �

þ 1

fresq�
:

(A56)

From Equation (A14), we find

q�ðs¼ 0Þ ¼�
vsfcat � vgfres

vgvs
: (A57)

Using Equation (A56) and (A57), we solve for the critical nucleation rate

pc ¼ �
d�ðs¼ 0;qÞ

dq
jq¼0

� ��1

¼
fresvgq

2

�

fres 1þ fcat
fres

� �

þ vgq�

¼ fresvg �
ðvsfcat � vgfresÞ

2

v2gv
2
s

�
1

fresþ fcat � fcat þ
vg
vs
fres

¼
ðvsfcat � vgfresÞ

2

vgvsðvg þ vsÞ
:

(A58)

In the scenario of polymer-stimulated nucleation, the minimal nucleation rate required for

aster growth is

pc ¼
ðvsfcat � vgfresÞ

2

vgvsðvgþ vsÞ
: (A59)

When both types of nucleation are present, we expect r
rc
þ p

pc
¼ 1 to define the transition,

where rc and pc are defined in the absence of the other type of nucleation as in Equation (5)

and (A59).

Numerical simulations predict a gap velocity for aster growth by
polymer-stimulated nucleation
We modified our numerical simulation to ask if polymer-stimulated nucleation predicts the aster

growth. Similar to the scenario of growing-plus-end-stimulated nucleation (Figure 2A), low

nucleation rate predicts a stationary aster (Figure 3—figure supplement 2A, left), while

high nucleation rate predicts an aster that continuously increases in radius (Figure 3—figure

supplement 2A, right) even when individual microtubules are unstable (J<0). To

systematically explore the polymer-stimulated nucleation scenario, we varied the model

parameters and measured the aster growth velocity V . We find that the transition from a

stationary to a growing aster is accompanied by a finite jump in V (Figure 3—figure

supplement 2B and C). Our predictions for the critical polymer nucleation rates pc is in

excellent quantitative agreement.

Comparison of autocatalytic nucleation mechanisms and
predictions for aster growth
Here, we compare and summarize the theoretical predictions of growing-plus-end-stimulated

nucleation vs. polymer-stimulated nucleation. Both scenarios predict

1. stationary and continuously growing asters in a parameter dependent manner
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2. the feasibility of aster growth with J<0, and that such asters are composed of short

microtubules

3. explosive transition to growth, or ‘gap velocity’, which allows independent control of aster

density and growth velocity.

The two scenarios predict qualitatively different transitions when the nucleation rate is

increased and the aster velocity reaches V ¼ vg. With growing-plus-end stimulated

nucleation, V approached vg in a smooth manner (Figure 3). In contrast, the polymer-

stimulated nucleation predicted a finite jump of V to vg (Figure 3—figure supplement 2A,

right). In the future, it may be possible to exploit this difference to distinguish the two

scenarios of nucleation experimentally.
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Appendix 10

Gap velocity constrains possible models of aster growth
Here, we describe three examples of potential aster growth models that are readily rejected by

the existence of a gap velocity. In all cases, let us assume that microtubules are unstable

(bounded dynamics J<0) with finite lifetime. Note that all three models do not account for

the internal dynamics of agents, namely, the length information of individual microtubules.

A simple expanding shell model with autocatalytic nucleation
Consider an aster growth model that does not keep track of microtubule positions, but simply

translates the number of microtubules into aster size:

dNþ

dt
~ r� 1

t

� �

Na
þ

Rd ~Nþ

(A60)

Nþ is the number of plus ends, R is the aster radius, d is the number of spatial dimensions, r

is the nucleation rate, and t is the microtubule lifetime. a ¼ 1 corresponds to no negative

feedback, while a ¼ d�1

d
corresponds to nucleation only at aster periphery. This is the

simplest, virtually non-spatial model. For a ¼ 1, the growth is exponential in time rather than

linear. For a ¼ d�1

d
, the growth is linear with the velocity V ~ r � 1

t

� �

. Thus, the model exhibits

critical nucleation (i.e. both stationary and growing asters), but no gap velocity.

A reaction-diffusion model
Previously, we hypothesized a Fisher-Kolmogorov type, reaction-diffusion model of aster growth

focusing on plus end dynamics (Ishihara et al., 2014b) and autocatalytic nucleation.

Denoting the plus end density as Cþ, carrying capacity as K, and the effective growth rate as

r � 1

t
, the model is as follows:

qCþ

qt
¼D

q
2Cþ

qx2
þ r�

1

t

� �

Cþ 1�
Cþ

K

� �

(A61)

This predicts an aster velocity of V ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D r � 1

t

� �

q

for r> 1

t
with no gap velocity.

A reaction-diffusion model with cooperative nucleation
A more general reaction-diffusion model is obtained by replacing the logistic growth term in

Equation (A61) by an arbitrary nonlinear function of the plus end density FðCþÞ:

qCþ

qt
¼D

q
2Cþ

qx2
þFðCþÞ (A62)

FðCþÞ can specify whether there is a minimal concentration of microtubules necessary for

nucleation or account for other effects such as cooperativity. Despite the possibilities of

quite complicated nucleation dynamics, all reaction-diffusion models specified by

Equation (A62) exhibit no gap velocity (Murray, 2002). Gap velocity has also not been

observed in a variety of further extensions of Equation (A62) that account for advection

terms and density-dependent diffusion (Murray, 2002).

Ishihara et al. eLife 2016;5:e19145. DOI: 10.7554/eLife.19145 36 of 36

Research article Biophysics and Structural Biology Cell Biology

http://dx.doi.org/10.7554/eLife.19145

